Phylogenetic Patterns of Colonization and Extinction in Experimentally Assembled Plant Communities
نویسندگان
چکیده
BACKGROUND Evolutionary history has provided insights into the assembly and functioning of plant communities, yet patterns of phylogenetic community structure have largely been based on non-dynamic observations of natural communities. We examined phylogenetic patterns of natural colonization, extinction and biomass production in experimentally assembled communities. METHODOLOGY/PRINCIPAL FINDINGS We used plant community phylogenetic patterns two years after experimental diversity treatments (1, 2, 4, 8 or 32 species) were discontinued. We constructed a 5-gene molecular phylogeny and statistically compared relatedness of species that colonized or went extinct to remaining community members and patterns of aboveground productivity. Phylogenetic relatedness converged as species-poor plots were colonized and speciose plots experienced extinctions, but plots maintained more differences in composition than in phylogenetic diversity. Successful colonists tended to either be closely or distantly related to community residents. Extinctions did not exhibit any strong relatedness patterns. Finally, plots that increased in phylogenetic diversity also increased in community productivity, though this effect was inseparable from legume colonization, since these colonists tended to be phylogenetically distantly related. CONCLUSIONS We found that successful non-legume colonists were typically found where close relatives already existed in the sown community; in contrast, successful legume colonists (on their own long branch in the phylogeny) resulted in plots that were colonized by distant relatives. While extinctions exhibited no pattern with respect to relatedness to sown plotmates, extinction plus colonization resulted in communities that converged to similar phylogenetic diversity values, while maintaining differences in species composition.
منابع مشابه
Extinctions, traits and phylogenetic community structure: insights from primate assemblages in Madagascar
Understanding the origin and maintenance of community composition through ecological and evolutionary time has been a central challenge in ecology. However little is known about how extinction may alter patterns of phylogenetic and phenotypic structure within communities. To address this, we used past and present primate communities in Madagascar as our model system to explore how a large extin...
متن کاملExperimental plant communities develop phylogenetically overdispersed abundance distributions during assembly.
The importance of competition between similar species in driving community assembly is much debated. Recently, phylogenetic patterns in species composition have been investigated to help resolve this question: phylogenetic clustering is taken to imply environmental filtering, and phylogenetic overdispersion to indicate limiting similarity between species. We used experimental plant communities ...
متن کاملWhat Shapes the Phylogenetic Structure of Anuran Communities in a Seasonal Environment? The Influence of Determinism at Regional Scale to Stochasticity or Antagonistic Forces at Local Scale
Ecological communities are structured by both deterministic and stochastic processes. We investigated phylogenetic patterns at regional and local scales to understand the influences of seasonal processes in shaping the structure of anuran communities in the southern Pantanal wetland, Brazil. We assessed the phylogenetic structure at different scales, using the Net Relatedness Index (NRI), the N...
متن کاملColonization-Competition Tradeoffs as a Mechanism Driving Successional Dynamics in Ectomycorrhizal Fungal Communities
Colonization-competition tradeoffs have been shown to be important determinants of succession in plant and animal communities, but their role in ectomycorrhizal (ECM) fungal communities is not well understood. To experimentally examine whether strong spore-based competitors remain dominant on plant root tips as competition shifts to mycelial-based interactions, we investigated the mycelial comp...
متن کاملEcological drift and the distribution of species diversity.
Ecological drift causes species abundances to fluctuate randomly, lowering diversity within communities and increasing differences among otherwise equivalent communities. Despite broad interest in ecological drift, ecologists have little experimental evidence of its consequences in nature, where competitive forces modulate species abundances. We manipulated drift by imposing 40-fold variation i...
متن کامل